Template attacks on nano-scale CMOS devices

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Template Attacks on Different Devices

Template attacks remain a most powerful side-channel technique to eavesdrop on tamper-resistant hardware. They use a profiling step to compute the parameters of a multivariate normal distribution from a training device and an attack step in which the parameters obtained during profiling are used to infer some secret value (e.g. cryptographic key) on a target device. Evaluations using the same d...

متن کامل

Low-Power Adder Design for Nano-Scale CMOS

A fast low-power 1-bit full adder circuit suitable for nano-scale CMOS implementation is presented. Out of the three modules in a common full-adder circuit, we have replaced one with a new design, and optimized another one, all with the goal to reduce the static power consumption. The design has been simulated and evaluated using the 65 nm PTM models.

متن کامل

Extremely Scaled Silicon Nano-CMOS Devices

Silicon-based CMOS technology can be scaled well into the nanometer regime. High-performance, planar, ultrathin-body devices fabricated on silicon-on-insulator substrates have been demonstrated down to 15-nm gate lengths. We have also introduced the FinFET, a double-gate device structure that is relatively simple to fabricate and can be scaled to gate lengths below 10 nm. In this paper, some of...

متن کامل

Low Power in Nano-scale Cmos Memory

Future technologies required nano-scale CMOS memory to be operating in low power consumption. The minimum operating voltage of the nano-scale CMOS played as a main factor to reduce the power consumption. Consequently, there are some limitations and obstacles to achieve the objective for several design, material and novel structural solutions, which are promising and reliable. In this research, ...

متن کامل

Linear low voltage nano-scale CMOS transconductor

This paper presents a high linearity MOSFETonly transconductor based on differential structures. While a precise BSIM4 transistor model is introduced through analysis, the linearity can be improved by mobility compensation techniques as the device size is scaled down in the nano-scale CMOS technology. When the compensation utilizes transistors in subthreshold region, rather than the transistors...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Cryptographic Engineering

سال: 2020

ISSN: 2190-8508,2190-8516

DOI: 10.1007/s13389-020-00225-8